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Non-manifold boundary representations have become very popular in recent years and
various representation schemes have been proposed, as they represent a wider range of
objects, for various applications, than conventional manifold representations. As these
schemes mainly focus on describing sufficient adjacency relationships of topological en-
tities, the models represented in these schemes occupy storage space redundantly, al-
though they are very efficient in answering queries on topological adjacency relation-
ships. To solve this problem, in this paper, we propose a compact as well as fast non-
manifold boundary representation, called the partial entity structure. This representation
reduces the storage size to half that of the radial edge structure, which is one of the most
popular and efficient of existing data structures, while allowing full topological adjacency
relationships to be derived without loss of efficiency. In order to verify the time and
storage efficiency of the partial entity structure, the time complexity of basic query pro-
cedures and the storage requirement for typical geometric models are derived and com-
pared with those of existing schemes.@DOI: 10.1115/1.1433486#
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1 Introduction

As a key element in CAD/CAM applications, geometric mod-
eling systems have evolved to increase their representation do-
mains from wireframes, to surfaces, to solids, and finally to non-
manifold objects. Unlike previous geometric modellers, the non-
manifold modeler allows any combination of wireframe, surface,
solid, and cellular models to be represented and manipulated in a
unified topological representation. This characteristic provides
many advantages over conventional models as follows:

• The non-manifold model can provide an integrated environ-
ment for the product development process, as the non-manifold
topological representation can represent different models required
in various stages of product development: conceptual design, final
design, analysis, and manufacture@1,2#. For instance, it handles
abstracted models for conceptual design, mixed dimensional
shapes for intermediate design steps, solid models for final design,
mesh models on abstracted part shape for engineering analysis
@3,4#, offset polyhedral models for tool path generation, and so on.

• Boolean operations are closed in the representation domain of
non-manifold models, unlike solid models@5–7#. The resultant
shape of Boolean operations can be stored in a merged set, which
contains not only the final Boolean result, but also a complete
description of the input primitives, all of the intersections between
them, and historical information@5,8,9#. By using this merged set,
B- rep models can be reshaped independently of their construction
Boolean sequences@9#, and a feature-based modeler based on
B-rep can be easily implemented@9,10#.

• Traditional solid modeling functions such as sweeping and
offsetting operations can be applied to different dimensional ob-
jects. For instance, a sheet model is generated by sweeping wire
edges, a solid model is generated by sweeping a sheet model, and
a mixed dimensional model is generated by sweeping a mixture of

sheets and wireframes@11#. In addition, a thin-walled solid model
can be generated efficiently by sheet modeling and offsetting@12#.

The research concerned with the foundation of non-manifold
modeling systems can be categorized into three groups: the design
of topological representation schemes, the specification of a set of
primitive topological operators, and the implementation of various
high-level modeling capabilities like sweeping or Boolean opera-
tions. In the area of the design of topological representation
schemes, several data structures such as the radial edge structure
and the vertex-based representation have been suggested so far.
These representations mainly focus on describing the sufficient
adjacency relationships between topological entities in a non-
manifold model without considering the storage size. As a result,
although they are quite efficient for topological queries, they are
so redundant and complicated that the models occupy too much
storage space. The storage requirement can be a critical problem,
particularly for models in which topological data storage is more
dominant than geometric data, such as tessellated or mesh models.
For example, a cellular model composed of one million cubical
cells requires more than 1 GB of storage only for its topological
data if it is represented in the radial edge structure. Therefore, it is
desirable to devise a new representation scheme that is more com-
pact, but as efficient as the existing schemes.

To fulfil this requirement, in this paper, we propose a compact
as well as fast non-manifold boundary representation, called the
partial entity structure~PES!. This representation allows the re-
duction of storage to approximately half that of the radial edge
structure, while still allowing full topological adjacency relation-
ships to be derived without loss of efficiency. In order to verify
this improvement, the time and storage efficiency of the partial
entity structure are investigated and compared with those of ex-
isting schemes.

The rest of this paper is organized as follows: Section 2 de-
scribes the previous work on non-manifold data structures. Sec-
tion 3 represents an approach to measure the time and storage
efficiency of a data structure, and our method to design a more
optimal data structure based on this measurement. Section 4 de-
scribes the partial topological entities that are introduced to rep-
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resent non- manifold conditions in a storage-efficient way. Section
5 shows the schematic diagram and the C11 implementation of
our data structure. Sections 6 and 7 analyze and compare the time
and storage complexity of our structure with those of other exist-
ing structures, especially the radial edge structure. Section 8 pre-
sents our conclusions.

2 Related Work
The first significant work on the non-manifold B-rep was car-

ried out by Weiler@7#. Weiler proposed an edge-based data struc-
ture called the radial edge structure~RES!. In order to represent
the adjacency relationships under non-manifold conditions at ver-
tices, edges, and faces, he introduced the topological entities, such
as face-use, loop-use, edge-use, and vertex-use, which are associ-
ated with the face, loop, edge, and vertex entities, respectively. In
virtue of theseuseentities, each region has its complete descrip-
tion of its boundaries, just like a solid model in a solid boundary
representation. Furthermore, in addition to a cyclic list of the
edge-uses in a loop, a cyclic list of the face-uses adjacent to an
edge is stored in the RES. According to Yamaguchi and Kimura
@13#, the ordering information of vertices and edges within a face
is called aloop cycle, the ordering of faces and regions about an
edge is aradial cycle, and the ordering of edges and faces about a
vertex is adisk cycle. Therefore, the RES represents explicitly the
radial and loop cycles. In non-manifold modeling, by using the
radial cycle information, a face-use can propagate to the incident
face-uses over the edge-uses to form a shell bounding a closed
region. However, in the RES, it is impossible to form a correct
shell using only topological data when a non-manifold vertex has
to be traversed. This is because the RES does not keep any sig-
nificant inclusion relationships between the incident two-manifold
surfaces to a non-manifold vertex. A vertex adjacent to two or
more two-manifold surfaces or wire edges is a typical non-
manifold vertex. Although Weiler had already recognized this
problem, he determined not to keep this information in the RES
because it costs too much to maintain such information at each
topology manipulation. Instead, he adopted a method in which the
system extracts this information using both geometric and topo-
logical data whenever necessary.

To overcome this drawback of the RES, Choi proposed the
Vertex-based Boundary Representation~VBR!, in which the zone
and disk entities are introduced to represent the inclusive relation-
ships between the local regions at a vertex@5,14#. In addition to
the loop and radial cycles, the disk cycle is represented explicitly
in the VBR. Thus, the VBR provides sufficient information for
forming shells when a new region is created by adding a new face.
However, Weiler’s decision to derive such information using geo-
metric data whenever necessary would be more rational from a
practical viewpoint, because the zone and disk information is not
frequently used in the normal geometric modeling process, and
maintaining such information at every topology manipulation in-
curs a very high cost.

Yamaguchi and Kimura introduced six coupling entities to rep-
resent the neighbourhoods and boundaries of basic topological
entities, and suggested a data structure based on the coupling en-
tities @13#. This representation also contains the three cycles men-
tioned above, and has the capability of providing as much topo-
logical information as the VBR. However, the resulting data
structure appears equivalent to the VBR because they introduced
the feather, which is not a coupling entity and has the same role as
the cusp in the VBR, and excluded several coupling entities such
as fans, blades, and wedges. For convenience, we will call this
structure the Coupling Entity Structure~CES! in the rest of this
paper.

Rossignac and O’Conner proposed the Selective Geometric
Complexes~SGC!, which are composed of finite collections of
mutually disjoint cells@15#. The cells are open connected subsets
of n-dimensional manifolds that are generalized concepts of ver-
tices, edges, faces, and regions. The SGC can represent an object

that has more than three dimensions or incomplete boundaries.
Since the data structure of the SGC is based on a simple incidence
graph that has no ordering information unlike the data structures
mentioned above, it does not enable easy computation of certain
important properties~orientability, for instance!, although the
topological information contained in this type of model is suffi-
cient @16#.

Lee and Lee suggested that the half-edge data structure for solid
modelling can be extended to accommodate non-manifold geo-
metric models in storage efficient way by introducing auxiliary
topological entities like partial entities@17#. However, they did not
show how much it is efficient in inquiring topological information
and how much it is efficient in storing typical non-manifold mod-
els. They dealt with these issues on their recent conference publi-
cation @18#, in which the concept of the partial entities is clearly
defined and explained in more detail with comparison of other
similar topological entities. In addition, the methods to measure
the time and storage efficiency of non-manifold data structure are
suggested and applied to the existing structures as well as the PES
to verify the storage and time efficiency of the PES. This paper is
an extended and revised version of Reference@18#.

On the other hand, several works have defined topological rep-
resentations for subdivided n-manifolds. Brisson defines the ‘cell-
tuple structure’ to represent the incidence and ordering informa-
tion in a subdivided n-manifold@19#. Lienhardt defines the ‘n-G-
map’ and the ‘n-map’, based on combinatorial maps@16,20#.
Hansen and Christensen proposed a hierarchical ‘split-element’
representation called the hyper-data structure@21#. These data
structures include the ‘quad-edge’ data structure of Guibas and
Stolfi @22# and the ‘facet-edge’ data structure of Dobkin and Las-
zlo @23# as special cases in dimensions2 and3, respectively.

3 Design Strategy for Optimal Data Structure
The efficiency and the storage of a data structure have a trade-

off relationship, and the optimality of the data structure depends
on its application. Woo pioneered the analytic measures for ana-
lyzing the performance of solid boundary representations@24#.
The optimal data structure for a general or specific set of applica-
tions can be constructed on the basis of his measures. When con-
sidering the solid boundary representation whose topological en-
tities are vertices, edges, and faces, there are over 500 data
structure schemata. The schemata are categorized into eight stor-
age classes according to the number of adjacency relations to be
stored. The storage complexity of a data structure is measured
using counting formulas, and the time complexity of a data struc-
ture is measured using a set of primitive queries and update rou-
tines. The schemata form a storage-time curve in the shape of the
letter ‘L’ as illustrated in Fig. 4 of Reference@24#. A globally
optimal data structure must be as near the origin of the L-curve as
possible. If one wants to design a faster data structure for a spe-
cific set of applications, they should investigate the frequency of
topological queries first, and then store the adjacency relations in
order of frequency. By applying these measures, it was discovered
that the winged edge data structure@25# is very close to the glo-
bally optimal data structure. Furthermore, Woo claimed that a new
data structure that has a lower storage requirement and a faster
time than the winged edge structure was found, and named it the
symmetric data structure. The symmetric data structure belongs to
the storage class which stores four relations out of nine, so called
the9C4 storage class, and is the fastest and the optimal structure in
this class. The symmetric data structure stores F→E, E→V, V→E,
and E→F relations. Here, S, F, L, E, and V denote shells, faces,
loops, edges, and vertices, respectively. If the symmetric data
structure includes loops and shells, it can be extended to store
S→F, F→S, F→L, L→F, L→E, E→L, E→V, and V→E relations.
However, we need to pay attention to the fact that the symmetric
data structure is a sort of incidence graph, whereas the winged-
edge structure represents ordered topological models.
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To date we are unaware of any reported research work for find-
ing an optimal data structure for non-manifold models. However,
the analytic measures proposed by Woo are also effective in non-
manifold data structure design. Currently, the RES is used widely
by researchers for non-manifold modeling and its applications.
Not only commercial modellers such as SMLib of Solid Model-
ling Solutions@26#, but also academic modellers researching vari-
ous non-manifold applications have adopted the RES as their to-
pological framework@3,27#. However, it is also true that there has
been little analytic rationalization of its time and storage effi-
ciency by its users.

In non-manifold models, there are six basic topological entities:
R, S, F, L, E, and V, and thus, 36 adjacency relationships may be
represented in the data structure. Here, R denotes regions. To fa-
cilitate the comparison between the symmetric data structure and
the RES, let us consider only the adjacency relationships among
R, F, E, and V. Then, the RES stores basically six relationships out
of 16: R→F, F→R, F→E, E→F, E→V, and V→E. If a region is
not bounded by any wireframe, the RES describes the boundaries
of a region, just as the symmetric data structure describes the
boundaries of a solid. Thus, we can conjecture that the RES is the
fastest data structure in the16C6 storage class to which it belongs,
because a non-manifold model is composed of a set of regions,
each of which is described by the symmetric data structure that is
the fastest in its storage class.

However, the storage efficiency of the RES cannot be said to be
optimal. As illustrated in Fig. 1, in the RES, each region of a
non-manifold model has its complete description of its boundaries
just like a solid B-rep model. As a result, the boundaries of re-
gions are stored twice in different orientations. Therefore, if we
reduce the redundancy of the RES as much as possible while
preserving the time efficiency of the RES, we can achieve a com-
pact as well as time-efficient data structure.

Regarding the zone and disk information, the RES does not
include this information because it is expensive to maintain this
information at every primitive topological operation while this
information is rarely used in actual geometric modelling opera-
tions. Instead, it is driven from the topology and geometry data
whenever necessary. If this information is omitted, both the VBR
and the CES are equivalent to the RES.

The goal of this paper is to construct a new non-manifold
boundary representation that requires less storage than the RES,
while still allowing full topological adjacency relationships to be
derived with the same time efficiency as the RES. In addition, the
ordering information of the RES is also maintained by our new
representation.

To achieve this goal, we made a new idea that our new repre-
sentation focuses on the frame of the model, not volumes, unlike
the RES, as illustrated in Fig. 2. Here, if the boundary information
of a region is necessary, it is derived from the faces of the frame
considering the direction to the region. Therefore, we can expect

that its storage size will be reduced to about half that of RES.
However, a not a little drop in time efficiency may not be avoided
due to the trade-off relationship between the time and the storage
efficiency of a data structure.

In this paper, we introduce new topological entities for repre-
senting the non-manifold conditions in time- and storage-efficient
ways, and design a new data structure based on these entities. In
addition, to verify the compactness and the time efficiency of our
representation, the storage and the time complexity of our repre-
sentation and the RES are derived and compared with each other.

4 Topological Entities

The cell complex embedded inE3 is widely adopted as a suit-
able mathematical model for3-D non-manifold objects@9,23,28#.
The cell complex ofE3 is a finite collection of0-, 1-, 2-, and
3-cells: the0-cell is equivalent to a vertex, the1-cell to an edge,
the2-cell to a face, and the3-cell to a region. Mathematically, an
n-cell is defined as a bounded subset ofEn that is homeomorphic
to ann-dimensional open sphere, and whose boundary consists of
a finite number of lower dimensional cells. A cell complex ofEn

is a finite collectionK of cells of En, K5ø$a:a is a cell% such
that if a and b are two different cells inK, thenaùb5B. The
cell complex of E3 is accepted as a topological model of our
representation, and it is intuitively a mixture of wireframes, sur-
faces, and solids, which we wish to describe.

The topological entities in our boundary representation are clas-
sified into two large groups: the primary and the secondary enti-
ties. The primary topological entities consist of0- to 3-cells ~i.e.,
vertex, edge, face, and region! and their bounding elements~i.e.,
loop and shell!. They are used commonly in3-D boundary repre-
sentations, and their definitions are identical to those of the exist-
ing representations such as the RES, the VBR, or the CES. The
secondary topological entities are the partial face~p-face!, partial
edge ~p-edge!, and partial vertex~p-vertex!. Together, they are
calledpartial topological entitiesor partial entities. They are in-
troduced to represent adjacency relationships among the primary
entities. The p-face is used to represent the non-manifold condi-
tion where a face is adjacent to two regions as shown in Fig. 3~a!.
The p-edge is introduced for the non-manifold condition where
more than two faces are connected to an edge as illustrated in Fig.
3~b!. The p-vertex is for the non-manifold case where more than
one two-manifold surfaces are connected to a vertex as shown in
Fig. 3~c!. Now we will explain the partial entities along with the
primary entities in the following sections.

4.1 Partial Faces. In our representation, a model is the
highest level of topological entity that can be an object of manipu-
lation in the non-manifold modeller. A model is composed of one
or more regions: one infinite open region and zero or more finite
closed regions. For example, the box with an inner partition
shown in Fig. 3~a! is represented by a non-manifold model with

Fig. 1 Regions and their boundaries in a cellular model repre-
sented in the radial edge structure „RES…

Fig. 2 The basic idea of our representation: representing the
frame of a model rather than its volumes
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three regions: in infinite external regionR0 and two closed inter-
nal regionsR1 and R2 as illustrated in Fig. 4. To distinguish a
material-filled region from an empty one, an attribute is assigned
to each region. It is set assolid for a filled region, andvoid for an
empty region. The region is bounded by the oriented boundaries,
known as the shells. A region has a single peripheral shell and
zero or more void shells. In Fig. 4,S0 is the virtual peripheral
shell of the infinite regionR0 , S1 is a void shell ofR0 , andS2 and
S3 are the peripheral shells ofR1 andR2 , respectively. The nor-
mal of a shell is directed to the inside of the region as illustrated
in Fig. 4. However, if a single vertex or wireframe edges are
associated with the shell, those portions are not oriented excep-
tionally.

In a non-manifold model, a face bounds two incident regions,
and thus each side of a face should be a part of the boundary of
each region. To meet this requirement, we split a face into two p-
faces. Then, p-faces gather to compose a shell. This is similar to
having two half edges for each edge to specify the boundary of a
face in the half edge data structure for solid objects@29#. As
shown in Fig. 5~a!, a p-face is usually one side of the correspond-
ing face. The normal of a p-face is directed to the inside of the
region as illustrated in Figs. 4 and 5. However, there are excep-
tions when an isolated vertex or wireframe edges are included in a

shell. In that case, an unoriented p-face is included for the consis-
tency of the data structure. The C11 implementation of such
exceptional cases is illustrated in more detail in Section 5.

The concept of the p-face is similar to the face-use of the RES,
the wall of the VBR, and the side of the CES. When comparing
the p-face with the face-use, however, there is an important dis-
tinction between two topological entities. As illustrated in Fig. 5,
the face-use has its own boundaries in the form of loop-uses,
whereas the p-face does not include any boundaries. The faces of
the RES, the VBR, and the CES have no data for their boundaries,
whereas the face of our representation has its own boundary data.
Because the boundaries of a face-use are coincident with those of
its mating face-use, except the orientation, one of them is redun-
dant. This argument is also effective for both the VBR and the
CES, because the wall and the side are designed in the same
manner with the face-use of the RES. However, in our represen-
tation, the boundary information of a p-face is derived from the
boundary of the corresponding face considering the orientation of
the p- face. By introducing the p-face, the total storage usage of
our representation becomes slightly less than half of the RES.

Another big distinction between the p-face and the face-use is
that the p-face can be associated with not only a face, but also a
wire edge or an isolated vertex in a region, whereas the face-use is
associated with only a face. Furthermore, a shell in the RES can
include only one of the following mutually exclusive alternatives:
a list of face-uses in a shell, a list of edge-uses for wire edges, and
a vertex-use for a single-vertex shell. This implies that the bound-
ary of a region composed of a mixture of lamina faces and wire
edges cannot be represented directly by a single shell. In this case,
two shells for the faces and the wire edges should represent such
a region boundary. On the contrary, in our representation, any
mixture of lamina faces and wire edges is directly represented by
a single shell, because the p-face represents not only the use of a
face, but also the use of a wire edge or an isolated vertex by a
region.

4.2 Partial Edges. The face is a surface bounded by a
single peripheral loop and zero or more hole loops. The loop is a
connected and oriented boundary of a face, and its orientation
follows the right-hand rule with respect to the normal of the face
geometry in our representation. Loops are classified into two
types: peripheral and hole loops. The peripheral loop is the outer
boundary of a face, whereas the hole loop is the inner boundary.
The peripheral loop has a counter-clockwise direction with respect
to the normal of the face geometry whereas the hole loop has a
clockwise direction. If an isolated vertex exists in a face, an un-
oriented hole loop is assigned to the vertex. An edge is a bounded
and open curve that does not include its end points. In our repre-
sentation, the edge is bounded by two p-vertices.

In a non-manifold model, an edge is adjacent to an arbitrary
number of faces, whereas it always neighbors two faces in a two-
manifold model. Since an edge should serve as the boundary of
the incident faces, we split an edge into as many p-edges as inci-
dent faces. For instance, the p-edges in the non-manifold sheet
model shown in Fig. 3~b! are illustrated in Fig. 6~a!. Here, the
edgeE1 is split into three p-edgesPE1 , PE2 , andPE3 , for the
three facesF1 , F2 , andF3 , respectively.

A p-edge is a component of a loop. A loop has a cyclic list of
p-edges. In normal cases, a p-edge has an edge pointer and an
orientation flag with respect to the edge geometry. As illustrated in
Fig. 6~a!, the direction of a p-edge follows that of the correspond-
ing loop, and its orientation flag is set accordingly. In this manner,
the loop cycle is directly represented in our representation. In the
case of a single-vertex loop, the p-edge is unoriented and points to
the isolated p-vertex instead of an edge. This special case is illus-
trated with a schematic diagram in Section 5.

Along with the loop cycle, in our representation, the radial
cycle of loops around an edge is represented by a cyclic list of the
p-edges around the edge. As illustrated in Fig. 6~b!, the p-edges
around an edge are ordered following the right-hand rule with

Fig. 3 Typical non-manifold conditions „a… a face with two in-
cident regions; „b… an edge with three incident faces; „c… a ver-
tex with two incident two-manifold surfaces

Fig. 4 Examples of regions and shells in a non-manifold
model

Fig. 5 Example of partial faces and face-uses: „a… two partial
faces for a face; „b… two face-uses for a face
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respect to the direction of the edge geometry. In order to facilitate
the search of p-edges in the reverse direction, the p-edges of an
edge are stored using a doubly linked list. This radial cycle infor-
mation is very useful for searching for a group of p-faces forming
a new shell when a region is divided in two. The C11 imple-
mentation of the class for the p-edge is described in Section 5.

The p-edge is distinguished from the edge-use of the RES by its
definition and usage. The p-edge in our representation composes a
loop bounding a face, whereas the edge-use composes a loop-use
bounding a face-use that is one side of a face. Since a face has two
face-uses in the RES, the number of edge-uses around an edge is
twice that of p-edges. The discussion about the VBR and the CES
can be explained in the same manner, because the cusp of the
VBR and the feather of the CES are equivalent to the edge-use of
the RES.

Incidentally, the p-edge looks similar to the co-edge of ACIS
@30#, which is a commercial solid modeling kernel of Spatial
Technology Inc., because a co-edge is given to each incident face
of the edge. However, the p-edge is distinguished from the co-
edge by the historical background and usage. The p-edge is de-
signed for non-manifold boundary representation from the begin-
ning, whereas the co-edge is initially introduced as the half edge
of the half edge data structure for solid modeling and then ex-
tended to accommodate the non-manifold condition at an edge.
The p-edge is associated only with the edges or isolated vertices
bounding a face, whereas the co-edge can be associated even with
wire edges. This seems to be a heritage of the solid boundary
representation where a wire edge is associated with two co-edges
to form a loop. In solid modeling, when a wireframe is closed by
adding an edge, a new face should be created according to the
Euler-Poincare formula. In our representation, a wire edge is di-
rectly associated with a p-face to form a shell. This similarity
gives our representation a great advantage over the RES when the
representation of ACIS is migrated to our representation. Just by
introducing the p-face and the p-vertex, the ACIS representation
can be converted to an immaculate non-manifold boundary repre-

sentation. The discussion about Parasolid can be covered in the
same manner, as the fin of Parasolid is equivalent to the co-edge
of ACIS.

4.3 Partial Vertices. In a non-manifold model, a vertex can
be adjacent to an arbitrary number of two-manifold surfaces. Note
that a two-manifold surface is formed by a group of connected
faces, and a wire edge can be dealt with as a degenerate case of a
surface. We introduce the p-vertex in order to handle such a non-
manifold condition at a vertex. Readers may imagine that the
p-vertices for a vertex are formed by splitting the vertex into as
many pieces as the adjacent surfaces. As illustrated in Fig. 7, each
p-vertex is a linkage to a surface or a wire edge. While the two-
manifold vertex is associated with only one p-vertex, a non-
manifold vertex can be associated with more than one p-vertex.

In the C11 implementation of our data structure, the p-vertex
class has two record fields: one is the pointer to the parent vertex,
and the other is the pointer to an edge associated with a two-
manifold surface or a wire edge. However, if an isolated vertex
forms a loop, that is, in the case of a single-vertex loop, the
p-vertex points to the single p-edge of the loop instead of an edge.
This exceptional case is represented in the schematic diagram of
our representation in Section 5.

Since a p-vertex points to only one edge of the connected
edges, the algorithms for searching for various adjacent topologi-
cal entities need to be developed. In Section 6, an algorithm is
introduced for finding all of the edges connected to a p-vertex. By
applying this algorithm, all query functions searching for the en-
tities adjacent to a given p-vertex can be implemented. The disk
information of the VBR and the CES can also be extracted using
the orientations of the p-edges and p-faces around a p-vertex.

5 Data Structure
The hierarchical data structure to store these topological entities

with their relationships is illustrated in Fig. 8. The data structure is
composed of the topological and geometrical parts similar to other
traditional B-reps. This data structure is named thePartial Entity
Structure~PES! in this paper. In Fig. 8, each arrow represents a
pointer to another entity. The solid arrows are for the normal

Fig. 6 Partial edges in loops and edges: „a… partial edges or-
dered in the corresponding loop; „b… partial edges ordered in
the corresponding edge

Fig. 7 Example of partial vertices around a vertex Fig. 8 Schematic diagram of the partial entity structure
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cases, while the dotted lines~a!, ~b!, and ~c! in Fig. 8 indicate
three exceptional cases, respectively:~a! single-vertex shells,~b!
wire edges, and~c! single-vertex loops. Here, a single-vertex shell
represents a shell containing only a vertex with no adjacent edges
or faces, a single-vertex loop represents a loop including only a
vertex with no adjacent edges, and a wire edge represents an edge
that does not have any incident face.

The implementation of our data structure with the C11 classes
is shown in Fig. 9. Each parent node points to one of its child
nodes, while all child nodes point to their parent node. All the

sibling entities are singly linked, except p-edges, in order to save
storage space. For p-edges, it is frequently required to find the
previous, or next, p-edge from the current one in the loop or radial
cycle. To respond to this query efficiently, p-edges are doubly
linked and ordered for the associated loop and edge. Note that the

–next fields in the face, edge, and vertex are introduced only in
order to enhance the efficiency of their traversal through the
model for display or picking, even though they are redundant.

In the case of single-vertex shells, a shell has only one p-face.
The –child field of the p-face contains a pointer to an isolated
vertex, and its–orient field is set asunoriented. The –parentfield
of the isolated vertex contains a pointer to the p-face. In the case
of wire edges, each wire edge is wrapped with a p-face. The

–child field of the p-face points to the corresponding wire edge,
and its–orient field is set asunoriented. The –parentfield of the
wire edge points to the corresponding p-face. In the case of single-
vertex loops, a loop has only one p-edge. The–child field of the
p-edge contains a pointer to a p-vertex for the isolated vertex, and
its –orient field is set asunoriented. The –parent field of the
p-vertex contains a pointer to the p-edge, and its–vertex field
points to the isolated vertex.

6 Analysis of Time Complexity
The time complexity of a data structure is usually evaluated by

measuring the response time of each basic query that returns to-
pological entities of a specific type that are adjacent to a given
entity. In this paper, we also adopted this method to compare the
time efficiency of our structure with that of the RES. LetR denote
the region,S the shell,F the face,L the loop,E the edge,V the
vertex, P f the p-face,Pe the p-edge,Pv the p-vertex,Fu the
face-use,Lu the loop-use,Eu the edge-use, andVu the vertex-
use, respectively. IfA and B represent one of the entities listed
above, we use the following symbols to facilitate the discussion:

Ai an A entity
A, $Ai%, or $Ai%

m a set ofA entities, wherem is the number
of A entities

^Ai& or ^Ai&
m an ordered set ofA entities

BAi the number ofB entities adjacent to
an Ai entity

Ai→$Bi% retrieval of allB entities adjacent to
an Ai entity

A→B or $Ai%→$Bi% retrieval of allB entities adjacent to
all A entities

The basic topological entities used in existing non-manifold
boundary representations are of six types: region, shell, face, loop,
edge, and vertex. Hence, there are 36 possible adjacency relation-
ships between two types of entities, as illustrated in the adjacency
relationship matrix in Table 1. This matrix also briefly describes
the algorithms of query procedures that collect topological entities
of a specific type that are adjacent to a given entity. This matrix
verifies that our representation can also provide the same adja-
cency relationships, including the ordering information, as does
the RES. In our representation, nine upward and downward diag-
onal adjacency relationships boxed by solid lines are directly rep-
resented in normal conditions. Note that our representation does
not directly store a list of all edges adjacent to a vertex, whereas
the RES does. In our representation, a vertex has only a list of
p-vertices, and each p-vertex points to only one of its adjacent
edges. Therefore, a procedure to find edges adjacent to a p-vertex
needs to be developed. The algorithm forVi→$Ei% is introduced
in the latter part of this section. In addition, six other adjacency
relationships boxed by dotted lines are also represented directly
under three special singular conditions: a single-vertex shell~S
→V and V→S!, a single-vertex loop~L→V and V→L!, and a
wire edge~S→E and E→S!. The remaining 26 adjacency rela-
tionships are derived from the existing adjacency relationship in-
formation. Since all 36 adjacency relationships for a non-manifold

Fig. 9 Implementation of the partial entity structure with the
classes in C ¿¿
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model can be derived from our representation, it can be said that
our representation is complete, according to Weiler’s definition
@7#.

In order to evaluate and compare the time efficiencies of the
PES and the RES, we need to measure the time required for ex-
ecuting each basic query function. The total running time of a
query function is the sum of two times: one is the time for execut-
ing the instructions, and the other is the time for accessing the
records and fields of a data structure. The number of record and
field accesses is a more important criterion than the number of
instructions, because a database access may cause a hard-disk
access and at least requires a main memory access. In most of the
previous work, therefore, the number of database accesses of each
basic query function is counted to evaluate and compare the time
complexity of data structures. We also adopted this method to
compare the efficiency of the PES with the RES. Now we show
the calculation of the time complexities of the selected queries,
and summarize the results for all of the queries in the form of a
table. Note that it is allowed to visit an entity more than once
during the traversal in the basic query function unless otherwise
stated.

Figure 10 shows the algorithm for a query procedure that re-
trieves the faces adjacent to a given region. For the sake of con-
venience, let us assume that the private members of C11 classes
for topological entities can be accessed directly by query func-
tions. As in this algorithm, most of the query procedures have
nested loops.

If SRi andP f Si denote the number of shells in a region, and the
number of p-faces in each shell, respectively, the total number of
field accessesNf is:

N f5(
j 51

SRi

~113P f Sj !5SRi13(
j 51

SRi

P f Sj5SRi13P f Ri .

As shown in the formula above, 113P f Sj times of field ac-
cesses occur for each shell. For each shell, as shown in Fig. 10,
the –nextfield of a shell is accessed once in line 1, and the–next,

–child, and–facefields of the p-face are accessed as many times
as the number of p- faces in a shell in lines 2 to 4. Therefore, the
total number of field accesses for visiting all of the faces of a
region is reduced toSRi13P f Ri . Since theP f Ri term is much
bigger thanSRi in the above formula, the dominant term of the
formula is 3P f Ri . If FuRi denotes the number of face-uses in a
region in the RES,FuRi is exactly the same asP f Ri . In order to
facilitate the comparison between the PES and the RES, we use
FuRi instead ofP f Ri .

In the same manner, we can count the total number of record
accesses. The record of each shell is accessed once in line 1, and
the p-face records in a shell are accessed as many times as the
number of p-faces in the shell in lines 2. Therefore, the total
number of record accesses isSRi1FuRi , and its dominant term
is FuRi .

As above, the adjacency relationshipV→E is not represented
directly in our representation. A vertex has a set of p-vertices and
each p-vertex has only a pointer to one of the edges connected to
the p-vertex. Thus, it is necessary to develop an algorithm for
finding all of the edges adjacent to a given vertex. The procedure
for Vi→$Ei% using the p-edge information is described in Fig. 11.
Note that in this algorithm, each of the edges adjacent to a vertex
is visited only once, even though multiple visiting is allowed to
the query procedures, according to the assumption in the begin-
ning of this section. This is because the vertex of our representa-
tion does not have any listed information about its adjacent enti-
ties.

All edges in a data structure are initially marked unvisited.
Marking can be stored in the storage for attributes. The procedure
EDGES-OF-PVERTEX is invoked for each p-vertex of a given
vertex to gather all of the edges adjacent to the vertex. The input
arguments of EDGES-OF-PVERTEX are a p-vertex pointerpv,
an edge pointere of the p-vertex, and an edge list pointere– l ist;
the output argument ise– l ist, whose content includes the edges
visited. The first task of this procedure is to mark the input edgee
visited and add it into the edge liste– l ist for output. Then, every
unvisited edge adjacent topv is visited in turn using EDGES-OF-
PVERTEX recursively. This is a typical depth-first search algo-
rithm. The edgenext–e to be visited next is determined using the
p-edges in a loop. Once all of the edges adjacent to the p-vertices
aroundv have been visited, the search is complete and the marks
of the found edges are reset as unvisited.

Now let us try to count the field and record accesses in this
query procedure. The procedure EDGES-OF-PVERTEX is called
exactly once for each edge adjacent tov, because it is invoked
only for an unvisited edge, and its first task is marking the edge as

Fig. 10 Query procedure for finding faces adjacent to a given
region

Table 1 The adjacency relationship matrix of the primary topological entities in the partial entity structure „PES…
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visited. During an execution of EDGES-OF-PVERTEX, field ac-
cesses occur 5PePv i12EPv i times, because there are two field
accesses in lines 2;3, and 5PeEi field accesses in the loop in
lines 5;12. Therefore, during an execution of EDGES-OF-
VERTEX, the total number of data structure field accesses is
5PeVi13EVi12PvVi if the field accesses ofe– l ist, which is
not a part of the data structure, are ignored. The most dominant
term of this formula is 5PeVi . The record accesses occur
3PeVi13EVi1PvVi times, and can be represented as 3PeVi in
the same manner. However, if the number of edges connected to a
vertex is not large,PeVi is not significantly greater thanEVi . For
example,PeVi52EVi under two-manifold conditions. Therefore,
we should be careful in asserting that our query procedure is more
efficient than that of the RES, although the most dominant term is
somewhat less than that of the RES. Actually, because the RES
stores directly all of the edges adjacent to a vertex using vertex-
uses, it is always faster than our representation in the following
queries for vertices:Vi→$Ri%, Vi→$Si%, Vi→$Fi%, Vi→$Li%,
Vi→$Ei%, and Vi→$Vi% in Table 1. However, as illustrated in
Tables 2 and 3, the order of time complexity of the vertex query
procedures of the PES is the same as that of the RES.

We investigated the counts of the field and record accesses for
all basic queries of our representation, and summarized them as a
matrix in Table 2. The same process has been carried out for the
RES and its result is summarized as a matrix in Table 3. The
figure outside the parentheses in each box denotes the number of
field accesses in a query, and the figure inside the parentheses
denotes the number of record accesses. To facilitate the compari-
son, we selected more convenient counting variables between the
RESs and the PESs based on such special relations asEuFui
5PeFi , EuLui5PeLi , EuEi52PeEi , and EuVi52PeVi .
The reason why we use the counting variables of the RES for the
adjacency relationships of shells and regions, such asLuRi ,
LuSi , EuRi , and EuSi , is that the corresponding variables of the
PES cannot be used as correct counts if a shell includes laminar
faces.

As appears in Tables 2 and 3, the order of time complexity of
each query of the PES is exactly the same as that of the RES. The
PES answers faster than the RES for 12 queries, slower for 19
queries, and at the same speed for five queries. As a result, it is
proven that the PES has almost the same time efficiency as the
RES.

7 Analysis of Storage Complexity
In this section, the storage cost of our data structure is estimated

and compared with existing structures. To facilitate the compari-
son, the following assumptions are made:

• The field for storing a pointer is four bytes in length.
• One byte is the minimum storage unit. Hence, for example, if

there are multiple flags in a class and the sum of their storage
sizes is less than one byte, one byte is allocated for them.

• The fields for attributes or geometric data are not counted.
Only the storage for topology data is estimated.

• Data structures are compared in their original forms without
any modification. Although a data structure has some redun-
dant parts, we leave it as it is when counting its storage cost.
If the implementation of a data structure was not published,
we assume that it uses singly linked lists for storing a set of
adjacent topological entities.

In order to compare the storage requirements of data structures,
the statistical data for the average numbers of topological entities
for general non-manifold models are required. Unfortunately, such
data is not available for non-manifold models yet, while the data
for solid models has been investigated by Wilson@31#. Thus, we
estimate and compare the storage costs of data structures using the
statistical data for solid models. According to Wilson@31#, a solid
object usually has only one shell. The average numbers of topo-
logical entities for solid models are expressed by the function of
the number of faces,f . The numbers of loops, edges, and vertices
are approximatelyf , 3f , and 2f . Each loop contains about six
edges, and approximately three edges meet at each vertex. The
overall storage size of a data structure is calculated by multiplying
the number of each entity by its record size and then summing
them.

The storage costs of several representative solid and non-
manifold data structures are presented in Table 4, where the stor-

Fig. 11 Query procedure for finding edges adjacent to a given
vertex.

Table 2 The number of field and record accesses for basic
queries in the partial entity structure „PES…

Table 3 The number of field and record accesses for basic
queries in the radial edge structure „RES…

Table 4 Storage costs of representative data structures for
solid or non-manifold modelling calculated using Wilson’s sta-
tistical data for solid models
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age cost of the RES is used as a reference for comparison. Ac-
cording to the assumptions mentioned above, the VBR and the
SGC are assumed to use singly linked lists as we are unaware of
any reported research work on their implementation to date. As
shown in Table 4, the PES is the most storage-efficient one among
the representative boundary representations listed in the table. As
compared to solid data structures such as the winged edge struc-
ture and the half edge structure, the PES has almost twice the
storage cost. However, this is natural because the PES has not
only new entities, such as p-faces and p-vertices, but also radial
link fields in p-edges, in order to represent non-manifold condi-
tions with a single unified framework. Note that the data structure
of ACIS 5.0 is more compact than the PES for representing solids.
However, the ACIS data structure is not a complete non-manifold
boundary representation. It was initially a half edge structure for
solid modelling, and it has since been extended to represent non-
manifold conditions. For instance, if more than one two-manifold
surfaces are connected to a vertex, the edge pointer in the vertex
class is set to null and multiple edge pointers are stored in the
attributevertedge. Consequently, the ACIS data structure is still
inefficient in answering some topological queries even though it
was extended to represent non-manifold conditions. For example,
if one asks the system to find two shells adjacent to a face, the

query function must traverse all of the shells and their faces
throughout the body, because the face class of ACIS includes only
one shell pointer.

In addition to the statistical data, we select several typical solid,
sheet, and wireframe models, as shown in Fig. 12, to compare the
storage sizes of the PES and the RES. As illustrated in Table 5,
our representation requires only approximately 40% of the storage
of the RES for solid, sheet, and cellular models, and about 80%
for wireframe models. Since a non-manifold model is a combina-
tion of solids, sheets, and wireframes, the storage costs of the PES
are expected to still be about 50% that of the RES for general
non-manifold models. In addition, we also investigated the storage
costs of several representative non-manifold data structures for the
selected models in Table 5, and the result is summarized as graphs
in Fig. 13.

8 Conclusion
In this paper, we propose a compact hierarchical non-manifold

boundary representation that allows significantly reduced data
storage while maintaining the time efficiency of the radial edge
structure, which is the most popular and efficient data structure
among the16C6 non-manifold B-reps. It includes six out of 16
topological adjacency relationships and the ordering information.
The partial topological entities have been introduced to represent
the non-manifold conditions at the face, edge, and vertex in an
economic and efficient way for the storage and retrieval of topo-
logical data. We showed first that all adjacency relationships be-
tween the basic topological entities could be extracted from this
data structure using basic query procedures. Next, in order to
prove that our representation is as efficient as the RES, we ana-
lyzed the time complexities of the basic topological query proce-
dures and compared them with those of the RES. Then, we esti-
mated the storage requirements of our representation for typical
solids, wireframes, meshes, and cells, and compared them with
those of other existing representations. As a result, it was proven
that our representation occupies only half the storage space of the

Fig. 12 Typical geometric models for storage comparison: „a…
an n -sided prism „nÄ6…; „b… a mesh model of s-rail shape; „c…
a mesh model of a 1 Õ4 drawing die; „d… a cellular model with
10Ã10Ã10 cubic cells

Fig. 13 Storage costs of representative non-manifold data
structures for the selected models in Table 5

Table 5 Storage requirements for some selected models represented in the radial edge structure and the partial entity structure
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RES. From a practical viewpoint, our structure has a great advan-
tage over the RES. The data structures of ACIS and Parasolid can
be converted to our structure very easily, because the co-edge of
ACIS and the fin of Parasolid are very similar to the p-edge of our
structure. Only by introducing the p-face and the p-vertex, they
can be converted to our structure.

Based on the partial entity structure, we have also developed an
object-oriented non-manifold geometric modeling kernel system
with open architecture, called NGM. All of the topological or
geometric information of non-manifold models can be accessed
directly and freely through the C11 class libraries, and all of the
modelling and interrogation functions are provided in the form of
APIs as well as C11 class libraries. This kernel provides not
only high-level modeling operations like Boolean and sweeping
operations, but also a set of Euler operators based on the general-
ized Euler-Poincare formula for 3-D non-manifold models@18#.
Through the development of a non-manifold modeler, it was con-
firmed that our data structure is sound and easy to be manipulated.
Further work is under way to bring this kernel to completion by
adding more modelling capabilities and to apply it to various ap-
plication areas.
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